dsinnxcosnxdx=
nsinn-1xcosn+1x
nsinn-1xcosnx
nsinn-1xcosn-1x
nsinn-1xsinn+1x
Explanation for the correct option :
Given, dsinnxcosnxdx
For differentiating this apply theorem for product du×vdx=udvdx+vdudx
⇒dsinnxcosnxdx=nsinn-1xcosxcosnx+sinnx-sinnxn⇒dsinnxcosnxdx=nsinn-1xcosxcosnx-sinxsinnx⇒dsinnxcosnxdx=nsinn-1xcosx+nx⇒dsinnxcosnxdx=nsinn-1xcos1+nx
Hence, correct answer is option A