dsinxlogxdx=
sinxlogxlogsinxx+cotx
sinxlogxlogsinxx+cotxlogx
sinxlogxlogsinxx+logx
none of these
Explanation for correct option:
Step-1: Simplify the given data.
Given, dsinxlogxdx
Let, y=sinxlogx
Taking log both side.
⇒logy=logsinxlogx⇒logy=logx×logsinx∵logax=xloga
Step-2: Differentiate w.r.t x
⇒1y×dydx=1x×logsinx+logx1sinx×cosx
⇒dydx=ylogsinxx+logxcotx⇒dydx=sinxlogxlogsinxx+logxcotx
Hence, the correct answer is option is B