dtan-1a-x1+axdx=
11+x2
-11+x2
a1+x2
none of these
Explanation for correct option:
Step-1: Simplify the given data.
Given, dtan-1a-x1+axdx
=dtan-1a-tan-1xdx∵tan-1a-x1+axtan-1a-tan-1x
Step-2: Differentiate with respect to x.
=0-11+x2∵tan-1aisconstant=-11+x2
Hence, correct answer is option B
If the function f(x)=⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩(1+|sin x|)a|sin x|,,−π6<x<0b,x=0etan 2xtan 3x,0<x<π6, is continuous at x = 0, then