ddxtan-1xa2-x2=
aa2+x2
1a2-x2
-1a2+x2
none of these
Explanation for correct option:
Step-1: Simplify the given data.
Given, ddxtan-1xa2-x2
Put, x=asinθ⇒θ=sin-1xa
ddxtan-1xa2-x2
=ddxtan-1asinθa2-asinθ2=ddxtan-1asinθacosθ=ddxtan-1tanθ=ddxθ=ddxsin-1xa
Step-2: Differentiate w.r.t x
=ddxsin-1xa=11-x2a2×1a=aa2-x2×1a=1a2-x2
Hence, the correct answer is option B.
The equation of the circle with center (– a, – b) and radius √a2 – b2 is: