ddx[sin2cot-11+x1-x]=
0
-12
12
-1
Simplifying the function using Trigonometric identities
Given, y=[sin2cot-11+x1-x]
Let,
1+x1-x=cotθ
⇒ 1+x1-x=cot2θ
⇒ x=cot2θ-1cot2θ+1
⇒ x=cos2θ-sin2θcos2θ+sin2θ
⇒ x=cos2θ
As,
⇒ y=sin2θ
∴dydx=2sinθcosθ×-12sin(2θ)=-12
Hence, Option (B) is the correct answer.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.