Determine n if
(i) 2nC3: nC2=12:1 (ii) 2nC3: nC3=11:1
(i) Here 2nC3:nC2=12:1
⇒ (2n)!3!(2n−3)!×2!(n−2)!n!=121
⇒ (2n)(2n−1)(2n−2)(2n−3)!3×2! (2n−3)!×2!(n−2)!n(n−1)(n−2)!=121
⇒ (2n)(2n−1)(2n−2)3×1n(n−1)=121
⇒ 4(2n−1)3=121
⇒ 8n−4=36⇒n=5
(ii) Here 2nC3: nC3=11:1
⇒ (2n)!3!(2n−3)!×2!(n−3)!n!=111
⇒ (2n)(2n−1)(2n−2)(2n−3)!3! (2n−3)!×3!(n−3)!n(n−1)(n−2)(n−3)!=111
⇒ (2n)(2n−1)(2n−2)n(n−1)(n−2)=111
⇒ 4(2n−1)n−2=111
⇒ 8n−4=11n−22
⇒ 3n=18⇒n=6.