Let y=tan−1[x1/3+a1/31−x1/3a1/3]
now, we know that
tan−1(a+b1−a.b)=tan−1a+tan−1b.
So, y=tan−1(x1/3)+tan−1(a1/3)
here a is constant i.e. tan−1(a1/3) is also constant.
dydx=ddx(tan−1[x1/3+a1/3x−x1/3a1/3])
=ddx(tan−1(x1/3)−tan−1(a1/3))
=ddx(tan−1(x1/3))−0.
now, ddx(tan−1A)=11+A2.dAdx
So, dydx=11+(x1/3)×(13).(x)1/3−2
=13(11+x2/3)(x)−2/3
ddxtan−1[x1/3+a1/31−x1/3a1/2]=13(1x2/3+x4/3)