dydx=1−cosx1+cosx
We know that cosx=2cos2x2−1=1−sin2x2
⇒dydx=1−(1−sin2x2)1+(2cos2x2−1)
=1−1+sin2x21+2cos2x2−1
=sin2x22cos2x2
=tan2x2
=sec2x2−1
⇒dydx=sec2x2−1
⇒dy=(sec2x2−1)dx
⇒∫dy=∫(sec2x2−1)dx
⇒∫dy=∫sec2x2dx−∫dx
⇒y=tanx212−x+c where c is the constant of integration
∴y=2tanx2−x+cwhere c is the constant of integration