dydx+x2+3y23x2+y2=0⇒dydx=−x2+3y23x2+y2puttingy=vxdydx=v+xdvdx⇒v+xdvdx=−x2+3v2x23x2+v2x2⇒v+xdvdx=−(1+3v23+v2)⇒xdvdx=−1−3v23+v2−v⇒xdvdx=−1−3v2−3v−v33+v2⇒∫v2+3v3+3v2+3v+1dv=∫−dxx⇒∫v2+3(v+1)(v2+2v+1)dv=∫−dxx⇒∫v2+3(v+1)(v+1)2dv=∫−dxx⇒∫v2+3(v+1)3dv=∫−dxxputtingv+1=tdv=dt⇒∫(t−1)2+3t3dt=−log|x|⇒∫t2+1−2t+3t3dt=log|x|⇒∫t2−2t+4t3dt=log|x|⇒∫(1t−2t2+4t3)dt=log|x|⇒logt+2t−1+4×−2t2=log|x|+c⇒logt|v+1|+2v+1−8(v+1)2=log|x|+c⇒logt|x+y|−log|x|+2xx+y−8x2(x+y)2=log|x|+c⇒logt|x+y|+2xx+y−8x2(x+y)2=2log|x|+c