Consider given the deferential equation,
dydx=y2−2yx−1
1y2−2ydy=1x−1dx
Taking integration both sides,
∫1y2−2ydy=∫1x−1dx
∫1y(y−2)dy=∫1x−1dx
∫[1y−2−1y]dy=∫1x−1dx
∫1y−2dy−∫1ydy=∫1x−1dx
log(y−2)−logy=log(x−1)+logC
lofy−2y=log(x−1)C
y−2y=x−1C
C(y−2)=y(x−1)
Hence, this is the answer.