Prove that:
n! / r! x (n-r)! + n! / (r-1)! x (n-r+1) = (n+1)! / r! x (n-r+1)!
Prove that: (i) n!(n−r)! = n(n-1)(n-2)...(n-(r-1)) (ii) n!(n−r)!r!+n!(n−r+1)!(r−1)! = (n+1)!r!(n−r+1)!
If 1≤r≤n then nn−1Cr−1 is equal to .........
List I
List II
A)nCr+nCr−1=
1)n+1Pr
B)nPrnPr−1=
2)n−r+1r
C)nPr+r nPr−1=
3)n−r+1
D)nCrnCr−1=
4)n+r−1
5)(n+1)Cr