Evaluate: sec8A−1sec4A−1=
The correct option is B tan8Atan2A
Given,
sec8A−1sec4A−1
=1cos8A−11cos4A−1
=1−cos8Acos8A1−cos4Acos4A
=cos4A(1−cos8a)cos8A(1−cos4A)
=cos4A(1−(1−2sin24A))cos8A(1−(1−2sin22A)) [∵cos2θ=1−2sin2θ]
=cos4A(2sin24A)cos8A(2sin22A)
=(2cos4Asin4A)sin4A(2cos8Asin22A) [∵sin2θ=2sinθcosθ]
=sin8Asin4A(2cos8Asin22A)
=tan8Asin4A2sin22A
=tan8A(2sin2Acos2A)2sin22A
=tan8Acos2Asin2A
=tan8Atan2A