wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xmyn+ynxm =2cos(mθnϕ)

Open in App
Solution

2cosθ=x+1x

x22xcosθ+1=0

x=2cosθ±4cos2θ42

=cosθ±isinθ

Similarly y=cosϕ±isinϕ

xmyn+ymxn=xmyn+ymxn

=(cosmθ±isinmθ)(cosnϕisinnϕ)+(cosmϕ±isinmϕ)(cosnθisinnθ)

xmyn+ymxn=2Re(cosmθ±isinmθ)(cosnϕisinnϕ)

=2(cosmθcosnϕ(±××i2)sinmθsinnϕ)

=2(cosmθcosnϕ+sinmθsinnϕ)

=2cos(mθnϕ)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon