2cosθ=x+1x
⇒x2−2xcosθ+1=0
x=2cosθ±√4cos2θ−42
=cosθ±isinθ
Similarly y=cosϕ±isinϕ
xmyn+ymxn=xmy−n+ymx−n
=(cosmθ±isinmθ)(cosnϕ∓isinnϕ)+(cosmϕ±isinmϕ)(cosnθ∓isinnθ)
xmyn+ymxn=2Re(cosmθ±isinmθ)(cosnϕ∓isinnϕ)
=2(cosmθcosnϕ(±×∓×i2)sinmθsinnϕ)
=2(cosmθcosnϕ+sinmθsinnϕ)
=2cos(mθ−nϕ)