Given:
f(x)=xex
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)e(x+h)−xexh
⇒f′(x)=limh→0(x+h)exeh−xexh
⇒f′(x)=limh→0xexeh+hexeh−xexh
⇒f′(x)=limh→0xexeh−xexh+limh→0hexehh
⇒f′(x)=limh→0xex(eh−1)h+limh→0exeh
⇒f′(x)=xex(1)+ex(e0)(∵limx→0ex−1x=1)
⇒f′(x)=xex+ex.1
⇒f′(x)=(x+1)ex
Hence, the derivative of xex is (x+1)ex