Differentiate given problems w.r.t.x.
y=(log x)log x
Let y=(log x)log x
Taking log on both sides, we get log y=log [(log x)log x]
⇒ log y=log x (log x) ∵ log mn=n log m
Differentiating both sides sides w.r.t. x, we have
1ydydx=(log x)ddxlog(log x)+loglog(x)ddxlog(x)
=(logx)1logx1x+log(logx)1x=1x1+log(logx)
∴ dydx=yx1+log(logx)
(log x)log xx(1+log(log x))=(log x)log x[1x+log(log x)x]