Consider given the expression,
⇒(x+1x)n+n1+1x
Differentiate with respect to x,
⇒ddx(x+1x)n+ddxn1+1x
∵ddxxn=n.xn−1andddxax=axlogex
⇒∴(x+1x)n−1ddx(x+1x)+n1+1x.logen.ddx(1+1x)
⇒(x+1x)n−1(1−1x2)+n1+1x.logen.(0−1x2)
⇒(x+1x)n−1(1−1x2)−n1+1x.logenx2
Hence, this is the answer.