DIfferentiate
sec−1x wrt x by first principle
From the First Principle we have
f′(x)=limh→0f(x+h)−f(x)h
Here , we have
f(x+h)=sec−1(x+h)
f(x)=sec−1(x)
∴ Using the First Principle we have
f′(x)=limh→0sec−1(x+h)−sec−1xh
Let secθ=x
θ=sec−1(x)
θ=tan−1√x2−1
sec−1(x)=tan−1√x2−1
sec−1(x)=sec−1(x) , When x≥1
sec−1(x)=Π−tan−1√x2−1,x≤1
∴ sec2θ−tan2θ=1
sec2θ=1+tan2θ
secθ=√1+tan2θ
Therefore, On Putting this value
f′(x)=limh→0sec−1(x+h)−sec−1xh
f′(x)=limh→0tan−1√1−(x+h)2−tan−1√1−x2h
Using tan−1a−tan−1b=tan−1[a−b1+ab]
=limh→0tan−1⎡⎢
⎢⎣√(x+h)2−1−√x2−11+(√(x+h)2−1)(√x2−1)⎤⎥
⎥⎦