Ley y=√(x−3)(x2+4)3x2+4x+5
Taking log on both sides, we get,
logy=log√(x−3)(x2+4)3x2+4x+5
logy=log((x−3)(x2+4)3x2+4x+5)12
logy=12log(x−3)(x2+4)(3x2+4x+5)
(Using logan=nloga)
logy=12log(x−3)(x2+4)(3x2+4x+5)
⎛⎝Using logab=loga+logband logab=loga−logb⎞⎠
logy=12(log(x−3)+log(x2+4)−log(3x2+4x+5)) ⋯(i)
Differentiating (i) w.r.t x, we get,
d(logy)dx=12⎛⎜
⎜
⎜⎝d(log(x−3))dx+d(log(x2+4))dx−d(log(3x2+4x+5))dx⎞⎟
⎟
⎟⎠
(using chain rule dydx=dydu×dudx)
1y(dydx)=12⎛⎜
⎜
⎜
⎜⎝1x−3⋅d(x−3)dx+1x2+4⋅d(x2+4)dx−1(3x2+4x+5)⋅d(3x2+4x+5)dx⎞⎟
⎟
⎟
⎟⎠
1y(dydx)=12⎡⎢
⎢
⎢⎣1x−3(1−0)+1x2+4(2x+0)−1(3x2+4x+5)(6x+4+0)⎤⎥
⎥
⎥⎦
1y(dydx)=12(1x−3+2xx2+4−6x+43x2+4x+5)
dydx=y2(1(x−3)+2xx2+4−6x+43x2+4x+5)
Substituting the value of y=√(x−3)(x2+4)3x2+4x+5,
We get,
dydx=12√(x−3)(x2+4)3x2+4x+5×(1(x−3)+2xx2+4−6x+43x2+4x+5)