wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate (x3)(x2+4)3x2+4x+5 w.r.t.x

Open in App
Solution

Ley y=(x3)(x2+4)3x2+4x+5

Taking log⁡ on both sides, we get,

logy=log(x3)(x2+4)3x2+4x+5

logy=log((x3)(x2+4)3x2+4x+5)12

logy=12log(x3)(x2+4)(3x2+4x+5)

(Using logan=nloga)

logy=12log(x3)(x2+4)(3x2+4x+5)

Using logab=loga+logband logab=logalogb

logy=12(log(x3)+log(x2+4)log(3x2+4x+5)) (i)

Differentiating (i) w.r.t x, we get,

d(logy)dx=12⎜ ⎜ ⎜d(log(x3))dx+d(log(x2+4))dxd(log(3x2+4x+5))dx⎟ ⎟ ⎟

(using chain rule dydx=dydu×dudx)

1y(dydx)=12⎜ ⎜ ⎜ ⎜1x3d(x3)dx+1x2+4d(x2+4)dx1(3x2+4x+5)d(3x2+4x+5)dx⎟ ⎟ ⎟ ⎟

1y(dydx)=12⎢ ⎢ ⎢1x3(10)+1x2+4(2x+0)1(3x2+4x+5)(6x+4+0)⎥ ⎥ ⎥

1y(dydx)=12(1x3+2xx2+46x+43x2+4x+5)

dydx=y2(1(x3)+2xx2+46x+43x2+4x+5)

Substituting the value of y=(x3)(x2+4)3x2+4x+5,

We get,

dydx=12(x3)(x2+4)3x2+4x+5×(1(x3)+2xx2+46x+43x2+4x+5)

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon