Given f(x)=√sin(cosx)
Differentiating it w.r.t x
Apply chain rule
[u(x)n]′=n.u(x)n−1.u′(x)
f′(x)=12sin12−1(cosx).dd[sin(cosx)]
Apply differentiation rule
[sin(u(x))]′=[cos(u(x))].u(x)′
f′(x)=cos(cosx)(−sinx)2√sin(cosx)
f′(x)=−sinxcos(cosx)2√sin(cosx)