Let xy=t ......(1)
⇒ylogx=logt by taking log both sides.
Differentiating w.r.t x we get
⇒yx+logxdydx=1tdtdx
⇒dtdx=t(yx+logxdydx)
⇒dtdx=xy(yx+logxdydx) where t=xy
⇒dtdx=yxy−1+xylogxdydx ......(2)
Let yx=w .....(3)
⇒xlogy=logw by taking log both sides.
Differentiating w.r.t x we get
⇒xydydx+logy=1wdwdx
⇒dwdx=w(xydydx+logy)
⇒dwdx=yx(xydydx+logy) where w=yx
⇒dwdx=xyx−1dydx+yxlogy ......(4)
From the question we have xy+yx=1
⇒t+w=1 from (1) and (3)
⇒dtdx+dwdx=0
⇒yxy−1+xylogxdydx+xyx−1dydx+yxlogy=0 from (2) and (4)
⇒(xylogx+xyx−1)dydx=−(yxy−1+yxlogy)
⇒dydx=−(yxy−1+yxlogy)(xylogx+xyx−1)