Let y=x2ln(√x2+9x2+4)
Let t=ln(√x2+9x2+4)
et=√x2+9x2+4
e2t=x2+9x2+4
Differentiate on both sides w.r.t. x
e2t.2.dtdx=2x(x2+4)−2x(x2+9)(x2+4)2
(x2+9)(x2+4).2.dtdx=−10x(x2+4)2
∴dtdx=−5x(x2+4)(x2+9)
y=x2t
Differentiate on both sides w.r.t. x
dydx=2xt+x2dtdx
dydx=2xln(√x2+9x2+4)−5x3(x2+4)(x2+9)