Differentiate xsinx w.r.t (sinx)x
i.e, d(xsinx)d(sinx)x=d(xsinx)dx.dxd(sinx)x=
=d(xsinx)dx.1d(sinx)xdx−−−−(1)
Let y1=xsinx
Applying log both sides
log y1=logxsinx=sinxlogx
Integrating w.r.t
1y1dy1dx=ddx(sinxlog x)=sinx.1x+cosxlog x
⇒ d y1dx=y1(sinxx+cosxlogx)=xsinx(sinxx+cosxlogx)−−−−(ii)
Again Let y2=(sinx)x
logy2=log(sinx)x=xlogsinx
differentiating both sides w.r.t x
1y2d y2dx=ddx(xlogsinx)=xddxlogsinx+logsinx.dxdx
=x.1sinxcosx+logsinx
=x.cotx=logsinx
dy2dx=y2(xcotx+logsinx)=(sinx)x(xcotx+logsinx)−−−−(iii)
Putting these (ii) and (iii) in (1) we have
d(x)sinxd(sinx)x=xsinx(sinxx+(cosxlogx))×1(sinx)x(x dx+logsinx)