Consider the given integral.
I=∫1/20cos−1xdx
I=(x−1√1−x2)1/20−∫1/20(x−1√1−x2)dx
I=⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝−12√1−(12)2−0⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠+∫1/20(x√1−x2)dx
Let t=1−x2
dtdx=0−2x
−dt2=xdx
Therefore,
I=⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝−12√1−(12)2⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠−12∫3/41(dt√t)
I=⎛⎜ ⎜ ⎜ ⎜⎝−12√1−14⎞⎟ ⎟ ⎟ ⎟⎠−12(2√t)3/41
I=⎛⎜ ⎜ ⎜ ⎜⎝−12√34⎞⎟ ⎟ ⎟ ⎟⎠−(√34−1)
I=(−1√3)−(√32−1)
I=(−1√3)−(√3−22)
I=−2−3+2√32√3
I=−5+2√32√3
Hence, this is the answer.