∫2π0sin4xdx=∫2π0(sin2x)2dx.=∫2π0(1−cos2x2)2dx
=∫02π[1−2cos2x+cos22x4]dx
=14∫2π0dx−12∫2π0cos2xdx+14∫2π0cos22xdx
=14[x]2π0−12[sin2x2]2π0+14∫2π0(1+cos4x2)dx
14[2x]−14[sin4π]+18[x]2π0+18[sin4x4]2π0
=π2−0+π4+(132×0)+C,c= constant of integration
=π2+π4=2π+π4=3π4+C Ans