wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

2π0sin4xdx

Open in App
Solution

2π0sin4xdx=2π0(sin2x)2dx.
=2π0(1cos2x2)2dx
=02π[12cos2x+cos22x4]dx
=142π0dx122π0cos2xdx+142π0cos22xdx
=14[x]2π012[sin2x2]2π0+142π0(1+cos4x2)dx
14[2x]14[sin4π]+18[x]2π0+18[sin4x4]2π0
=π20+π4+(132×0)+C,c= constant of integration
=π2+π4=2π+π4=3π4+C Ans

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon