∫41∣∣x2−5x+6∣∣dx
=(x2−5x+6)|(x2−5x+6)|∫(x2−5x+6)dx
=(x2−5x+6)|(x2−5x+6)|(x33−5x22+6x)
∫∣∣x2−5x+6∣∣dx=(x−3)(x−2)|(x−3)||(x−2)|(x33−5x22+6x)+C
∫41∣∣x2−5x+6∣∣dx=(x−3)(x−2)|(x−3)||(x−2)|(x33−5x22+6x)+C
=(4−3)(4−2)|(4−3)||(4−2)|(433−5422+6×4)−(1−3)(1−2)|(1−3)||(1−2)|(133−5122+6×1)
=(433−5422+6×4)−(133−5122+6×1)
=126−225+1086
=32
∫41∣∣x2−5x+6∣∣dx=32