The correct option is
B 2(1−1e)We know,
By parts integrals
∫u.v dx=u∫v dx −∫(dudx∫v dx)dx
∫lnx⋅1dx=lnx∫dx−∫1x∫dxdx
=xlnx−x+c
∫e1/e |lnx|dx=∫11/e|lnx|dx+∫e1|lnx|dx
=∫−11/elnxdx+∫e1lnxdx
=−[x(lnx−1)]11/e+[x|lnx−1|]e1
=−[−1−1e(−2)]+[0−1(−1)]
=2(1−1e)
∴ Option B is correct