∫1ln(xx)(1+lnx)dx is equal to
(where C is constant of integration)
A
ln∣∣∣1+lnxlnx∣∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x⋅ln∣∣∣lnx1+lnx∣∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ln∣∣∣lnx1+lnx∣∣∣+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x⋅ln∣∣∣1+lnxlnx∣∣∣+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cln∣∣∣lnx1+lnx∣∣∣+C I=∫1x⋅lnx(1+lnx)dx
Putting lnx=t ⇒1xdx=dt∴∫1t(1+t)dt=∫(1+t)−tt(1+t)dt=∫(1t−11+t)dt=ln|t|−ln|1+t|+C=ln∣∣∣t1+t∣∣∣+C=ln∣∣∣lnx1+lnx∣∣∣+C