⇒ ∫1−x2x(1−2x)dx−−−−(1)
x−2x2)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯1−x2x/2−x2−+_____________1−x/2
∴ 1−x2=(x−2x2)(1−x/2)+1/2
so, equation (1) becomes
⇒ ∫1−x/2x(1−2x)dx−−−(2)
Now, ∫1−x/2x(1−2x)dx=Ax+B1−2x
⇒ A(1−2x)+Bx=1−x/2
comparing powers and coefficients
⇒ x2+lnx+∫3/21−2xdx
multiplying and dividing by (−2)
⇒ x/2+lnx+32(−2)∫(−2)1−2xdx
⇒ x2+ln|x|−34ln|1−2x|+C