By the method of partial fractions,
3x+1(x+1)2(x+3)=Ax+1+B(x+1)2+Cx+3
⇒3x+1=A(x+1)(x+3)+B(x+3)+C(x+1)2
Put x=−1
⇒3×−1+1=B(−1+3)
⇒−2=2B or B=−1
Put x=−3
⇒3×−3+1=C(−3+1)2
⇒−9+1=4C
⇒4C=−8 or C=−2
Put x=0
⇒3×0+1=A(0+1)(0+3)+B(0+3)+C(0+1)2
⇒3A+3B+C=1
⇒3A+3×−1−2=1
⇒3A=1+5=6
∴A=63=2
Now 3x+1(x+1)2(x+3)=2x+1−1(x+1)2−2x+3
∫3x+1(x+1)2(x+3)dx=∫2dxx+1−∫dx(x+1)2−∫2dxx+3
=2∫dxx+1−∫dx(x+1)2−2∫dxx+3
=2log|x+1|−(x+1)−2+1−2+1−2log|x+3|+c
=2log∣∣∣x+1x+3∣∣∣+1x+1+c where c is the constant of integration.
'