Solution :-
I=∫10(cos−1x)2dx
Let cos−1x=y
⇒x=cosy
⇒dx=−sinydy
I=∫10−y2sin(y)dy
Now integrating by parts, assume u=y2
⇒du=2ydy
and dv=−sin(y)dy
⇒v=cos(y)
Now ∫udv=uv=∫vdu
I=[y2cosy]10−2∫10ycos(y)dy
I=cos(1)−2∫10ycos(y)dy
=cos(1)−2[ysin(y)+cosy]10
=cos(1)−2sin(1)−cos1+2.
=2−2sin(1)