∫sin3xdx
∫sinx(1−cos2x)dx
−cosx−∫cos2xsinxdx
−cosx+∫u2du
−cosx+cos3x3+C
Integrating by parts, we get
x(−cosx+cos3x3)−∫(−cosx+cos3x3)dx
−xcosx+xcos3x3+sinx−∫cos3xdx
−xcosx+xcos3x3+sinx−∫cosx(1−sin2x)dx
−xcosx+xcos3x3+sinx−∫cosxdx−∫cosxsin2xdx
−xcosx+xcos3x3−u33
−xcosx+xcos3x3−sin3x3