Sol:
∫xsinx2dx
Let
I=∫xsinx2dx
We know that
I=∫Πdx=I∫Πdx−∫(dIdx∫Πdx)dx+C
Now, using LATε
I=∫xsinx2dx=x∫sinx2dx−[∫(dxdx∫sinx2dx)dx]+C
=x[−cosx2]12−∫(−cosx2)12dx+C
=−2xcosx2+∫2cosx2dx+C
=2xcosx2+2∫cosx2dx+C
=−2cosx2+2⎡⎢
⎢
⎢⎣sinx212⎤⎥
⎥
⎥⎦+C
=−cosx2+4sinx2+C
Hence, this is the answer.