The correct option is
D 0given, sin200+sin400−sin800
=sin400+sin200−sin800
=2sin(400+2002)cos(400−2002)−sin800 [∵sinA+sinB=2sin(A+B2).cos(A−B2)]
=2sin300.cos100−sin800
=2sin300.cos100−sin(900−100) [∵sin300=1/2,&sin(900−θ)=cosθ]
=2×12×cos100−cos100
=cos100−cos100
=0