Consider
tan−1(cn−cn−11+cn.cn−1)
=tan−1(1cn−1−1cn1+1cn.1cn−1)
=tan−1(1cn−1)−tan−1(1cn)
Hence
tan−1(c2−c11+c1.c2)+tan−1(c2−c31+c2.c3)+....+tan−1(1cn)
=tan−1(1c1)−tan−1(1c2)+tan−1(1c2)−tan−1(1c3)....+tan−1(1cn−1)−tan−1(1cn)+tan−1(1cn)
=tan−1(1c1) ...(i)
Now
tan−1c1x−yc1y+x+tan−1(1c1)
=tan−1(c1x−yc1y+x+1c11−1c1.c1x−yc1y+x)
=tan−1(c21x−c1y+c1y+xc21y+c1x−c1x+y)
=tan−1(c21x+xc21y+y)
=tan−1(xy).