The correct option is A dydx=y[−2tanx+2xlog2+3x2−2x3−2x+1−sec2xtanx−sinhxcoshx−1]
y=cos2x.2x2(x3−2x+1)tanxcoshx.ex−2
Taking log,
logy=2log(cosx)+x2log2+log(x3−2x+1)−log(tanx)−log(coshx)−(x−2)
Differentiating both side w.r.t x
dydx=y[−2tanx+2xlog2+3x2−2x3−2x+1−sec2xtanx−sinhxcoshx−1]