Divide:
[(a2+2ab+b2)−(a2+2ac+c2)] by 2a+b+c
Given [(a2+2ab+b2)−(a2+2ac+c2)]÷(2a+b+c)
=[(a+b)2−(a+c)2]÷(2a+b+c) [Since, a2+2ab+b2=(a+b)2, a2−b2=(a−b)(a+b)]
=[(a+b+a+c)(a+b−a−c)]÷(2a+b+c)
=(2a+b+c)(b−c)÷(2a+b+c)
∴[(a2+2ab+b2)−(a2+2ac+c2)]÷(2a+b+c)=(b−c)