extanydx+(1−ex)sec2ydy=0
extanydx=−(1−ex)sec2ydy
exex−1.dx=sec2ytany.dy
∫exex−1.dx=∫sec2ytany.dy−−−−(1)
Put ex−1=u tany=v
ex.dx=du sec2ydy=dv
ex=dudx sec2ydy=dv
ex=dudx sec2ydy=dv
dx=duex dy=dvsec2y
Put in (1)
∫exu.duex=∫sec2yv.dvsec2y
∫duu=∫dvv
logu+c1=logv
log(ex−1)+c1=log(tany)
log|ex−1|+logc=log|tany|
log|c(ex−1)|=log|tany|
c(ex−1)=tany