wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

extanydx+(1ex)sec2ydy=0

Open in App
Solution

extanydx+(1ex)sec2ydy=0
extanydx=(1ex)sec2ydy
exex1.dx=sec2ytany.dy
exex1.dx=sec2ytany.dy(1)
Put ex1=u tany=v
ex.dx=du sec2ydy=dv
ex=dudx sec2ydy=dv
ex=dudx sec2ydy=dv
dx=duex dy=dvsec2y
Put in (1)
exu.duex=sec2yv.dvsec2y
duu=dvv
logu+c1=logv
log(ex1)+c1=log(tany)
log|ex1|+logc=log|tany|
log|c(ex1)|=log|tany|
c(ex1)=tany

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon