consider given equation,
x=acos3θ......(1)andy=asin3θ......(2)
From equation (1) and (2) to,
xa=cos3θandya=sin3θ
(xa)13=cosθand(ya)13=sinθ
Then,
cosθ=(xa)13......(3)andsinθ=(ya)13......(4)]
Squaring both side equation (3) and (4), we get
cos2θ=(xa)23......(5)andsin2θ=(ya)23......(6)]
Adding equation (5) and (6) to,
cos2θ+sin2θ=(xa)23+(ya)23]
[1=(xa)23+(ya)23]
[(xa)23+(ya)23=1]
The above equation is independent to θ.