s=12C1+22C2+32C3+42C4+.....+n2Cn
(1+x)n=nC0+nC1x+nC2x2+nC3x3+.....+nCnxn
Differentiable w.r.t. x
n(1+x)n−1=0+nC1+2nC2x+3nC3x2+.....+nnCxxn−1
Multiply whole expression with x
nx(1+x)n−1=nC1x+2nC2x2+3nC3x3+...…+nnCnxn
Differentiable w.r.t. x again
n(1+x)n−1+nx(n−1)(1+x)n−2=nC1+22nC2x+32nC3x2+nnCnxn−1
Put x=1
⇒S=nC1+22nC2+32nC3+...….+n2nCn
=n(1+1)n−1+n.1.(n−1)(1+1)n−2
=n2n−1+n(n−1)2n−2
=n2n−2(2+(n−1))=n2n−2(n+1).