The correct option is B (ab+bc+ca)3
∣∣
∣
∣∣−bcb2+bcc2+bca2+ac−acc2+aca2+abb2+ab−ab∣∣
∣
∣∣
Multiplying R1,R2,R3 by a,b,c respectively
=1abc∣∣
∣
∣∣−abcab2+abcac2+abcba2+abc−abcbc2+abcca2+abccb2+abc−abc∣∣
∣
∣∣
=1abc∣∣
∣
∣∣−abcb(ab+ac)c(ac+aba(ab+bc)−abcc(bc+ab)a(ca+bc)b(cb+ac)−abc∣∣
∣
∣∣
Taking a,b,c common fromC1,C2,C3 respectively =∣∣
∣
∣∣−bc(ab+ac)(ac+ab)(ab+bc)−ac(bc+ab)(ca+bc)(cb+ac)−ab∣∣
∣
∣∣
R1→R1+R2+R3
=∣∣
∣
∣∣ab+bc+caab+bc+ac)ab+bc+ca)(ab+bc)−ac(bc+ab)(ca+bc)(cb+ac)−ab∣∣
∣
∣∣=(ab+bc+ac)∣∣
∣
∣∣111(ab+bc)−ac(bc+ab)(ca+bc)(cb+ac)−ab∣∣
∣
∣∣
C1→C1−C2,C2→C2−C3
=(ab+bc+ac)∣∣
∣
∣∣001ab+bc+ac−(ab+bc+ac)(bc+ab)0(ab+bc+ac)−ab∣∣
∣
∣∣
=(ab+bc+ac)3