wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: ∣∣ ∣ ∣∣−bcb2+bcc2+bca2+ac−acc2+aca2abb2+ab−ab∣∣ ∣ ∣∣

A
(ab+bc+ca)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(ab+bc+ca)3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(ab+bc+ca)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a+b+c)3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (ab+bc+ca)3
∣ ∣ ∣bcb2+bcc2+bca2+acacc2+aca2+abb2+abab∣ ∣ ∣
Multiplying R1,R2,R3 by a,b,c respectively
=1abc∣ ∣ ∣abcab2+abcac2+abcba2+abcabcbc2+abcca2+abccb2+abcabc∣ ∣ ∣
=1abc∣ ∣ ∣abcb(ab+ac)c(ac+aba(ab+bc)abcc(bc+ab)a(ca+bc)b(cb+ac)abc∣ ∣ ∣
Taking a,b,c common fromC1,C2,C3 respectively =∣ ∣ ∣bc(ab+ac)(ac+ab)(ab+bc)ac(bc+ab)(ca+bc)(cb+ac)ab∣ ∣ ∣
R1R1+R2+R3
=∣ ∣ ∣ab+bc+caab+bc+ac)ab+bc+ca)(ab+bc)ac(bc+ab)(ca+bc)(cb+ac)ab∣ ∣ ∣=(ab+bc+ac)∣ ∣ ∣111(ab+bc)ac(bc+ab)(ca+bc)(cb+ac)ab∣ ∣ ∣
C1C1C2,C2C2C3
=(ab+bc+ac)∣ ∣ ∣001ab+bc+ac(ab+bc+ac)(bc+ab)0(ab+bc+ac)ab∣ ∣ ∣
=(ab+bc+ac)3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon