We have,
2sin2x−cosx6−cos2x−4sinx
Then,
2(2sinxcosx)−cosx6−(1−sin2x)−4sinx
⇒4sinxcosx−cosx6−(1−sin2x)−4sinx
⇒4sinxcosx−cosx6−1+sin2x−4sin2x
⇒cosx(4sinx−1)5−3sin2x
Hence, this is the answer.
Evaluate ∫cos2x+2sin2xcos2xdx