We have,
∫π20cos5xdx
Let
I5=∫π20cos5xdx
Now,
∫π20cos5xdx=I5
=45I3
=45×23×I1
=815∫π20cosxdx
=815[sinx]0π2
=815[sinπ2−sin0o]
=815×1
=815
By using properties of definite integrals, evaluate the integrals ∫π20cos5xsin5x+cos5xdx.