∫π20sin3xdx
=14∫π204sin3xdx
We know that sin3x=3sinx−4sin3x⇒4sin3x=3sinx−sin3x
=14∫π20(3sinx−sin3x)dx
=14∫π203sinxdx−14∫π20sin3xdx
=34∫π20sinxdx−14∫π20sin3xdx
=34[−cosx]π20−14[−cos3x3]π20
=−34[cosπ2−cos0]+112[cos3π2−cos0]
=−34[0−1]+112[cos(π+π2)−1]
=34+112[cosπ2−1]
=34+112[0−1]
=34−112
=3×34×3−112
=912−112
=812=23