wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 0sinxdx

Open in App
Solution

Let us first evaluate;
I=esxsinxdx and J=esxcosxdx
Using integer by parts, we get
I=esxcosxsJ (i)
J=esxsinx+sI (ii)
Subtracting equations (i) and (ii), we get
I=esxcosx+ssinx1+s2
J=esxsinxs2s2+1sinxss2+1cosx
esxsinxscosx1+s2
Thus, 0esxsinxdx=1s2+1
0esxcosxdx=ss2+1
Now, 0sinxdx=lims00esxsinxdx=lims01s2+1=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon