Let us first evaluate;
I=∫e−sxsinxdx and J=∫e−sxcosxdx
Using integer by parts, we get
I=−e−sxcosx−sJ (i)
J=e−sxsinx+sI (ii)
Subtracting equations (i) and (ii), we get
I=−e−sx∣∣∣cosx+ssinx1+s2∣∣∣
⟹J=e−sx∣∣∣sinx−s2s2+1sinx−ss2+1cosx∣∣∣
e−sx∣∣∣sinx−scosx1+s2∣∣∣
Thus, ∫∞0e−sxsinxdx=1s2+1
∫∞0e−sxcosxdx=ss2+1
Now, ∫∞0sinxdx=lims→0∫∞0e−sxsinxdx=lims→01s2+1=1