Evaluate : x5+n(x2)3n+1x7n−2
x5+n×(x2)3n+1x7n−2=x5+n×x2(3n+1)x7n−2=x5+n×x6n+2x7n−2=x5+n+6n+2−7n+2=x9
Evaluate limx→0(1+x)6−1(1+x)5−1
Evaluate (x5)×(3x2)×(−2x) for x=1.