We have,
I=∫dxsin(x−a)cos(x−b)
On multiplying and divide by cos(b−a)
Then,
I=1cos(b−a)∫cos[(x−a)−(x−b)]sn(x−a)cos(x−b)dx
I=1cos(b−a)∫cos(x−a)cos(x−b)+sin(x−a)sin(x−b)sin(x−a)cos(x−b)dx
I=1cos(b−a)(∫cos(x−a)sin(x−a)dx+∫sin(x−b)cos(x−b)dx)
I=1cos(b−a)(∫cot(x−a)dx+tan(x−b)dx)
I=1cos(b−a)[log|sin(x−a)|+log|sec(x−b)|]+C
I=1cos(b−a)[log∣∣∣sin(x−a)cos(x−b)∣∣∣]+C
Hence,
this is the answer.