I=∫(x+4x2+5)dx
=∫(xx2+5)dx+4∫(1x2+5)dx
Usex2+5=t,then2xdx=dt
anduseformula=∫(1a2+x2)dx=(1a)tan−1(xa)d
∴I=(12)∫(dtt)+4∫(1x2+(√5)2)dx
=(12)logt+4⋅(1√5)tan−1(x√5)+C
=(12)log(x2+5)+(4√5)tan−1(x√5)+C
Evaluate the following integral:
Evaluate ∫x2+3x+5 dx