wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 10x4(1x)41+x2dx

Open in App
Solution

Consider the given integral.

I=10x4(1x)41+x2dx

I=10x4(1x)2(1x)21+x2dx

I=10x4(1+x22x)(1+x22x)1+x2dx

I=10x4(1+x22x+x2+x42x32x2x3+4x2)1+x2dx

I=10x4(1+6x2+x44x34x)1+x2dx

I=10(x4+6x6+x84x74x5)1+x2dx

I=10(x84x7+6x64x5+x4)x2+1dx

I=10(x64x5+5x44x2+441+x2)dx

I=[x774x66+5x554x33+4x4tan1x]10

I=[1746+5543+44tan1(1)[0]]

I=[1723+143+44tan1(tanπ4)]

I=[172343+54π4]

I=[172+5π]

I=[173π]

I=(207+π)

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon