Consider the given integral.
I=∫10x4(1−x)41+x2dx
I=∫10x4(1−x)2(1−x)21+x2dx
I=∫10x4(1+x2−2x)(1+x2−2x)1+x2dx
I=∫10x4(1+x2−2x+x2+x4−2x3−2x−2x3+4x2)1+x2dx
I=∫10x4(1+6x2+x4−4x3−4x)1+x2dx
I=∫10(x4+6x6+x8−4x7−4x5)1+x2dx
I=∫10(x8−4x7+6x6−4x5+x4)x2+1dx
I=∫10(x6−4x5+5x4−4x2+4−41+x2)dx
I=[x77−4x66+5x55−4x33+4x−4tan−1x]10
I=[17−46+55−43+4−4tan−1(1)−[0]]
I=[17−23+1−43+4−4tan−1(tanπ4)]
I=[17−23−43+5−4π4]
I=[17−2+5−π]
I=[17−3−π]
I=−(207+π)
Hence, this is the answer.