We have,
∫10sin−1(2x1+x2)dx
Let
x=tanθ
dx=sec2θdθ
Change limit and we
get,
x=0
tanθ=0
tanθ=tan0
θ=0
And
x=1
tanθ=1
tanθ=tanπ4
θ=π4
So,
∫π40sin−1(2tanθ1+tan2θ)sec2θdθ
⇒∫π40sin−1sin2θsec2θdθ
⇒∫π402θsec2θdθ
⇒2∫π40θsec2θdθ
On integrating and we
get,
2∫π40θsec2θdθ
=2[θ∫π40sec2θdθ−∫π40(∫π40ddθθsec2θdθ)dθ]
=2[θtanθ]0π4−2(−logcosθ)0π4
=2[(π4−0)(tanπ4−tan0)]+2[logcosπ4−logcos0]
=2[π4(1−0)]+2[log1√2−log1]
=2[π4]+2[log1−log√2−log1]
=π2−2log√2
Hence, this is the answer.