Consider the given integral.
I=∫20[x2]dx
Since,
[x2]=0forx∈[0,1]
[x2]=1forx∈[1,√2]
[x2]=0forx∈[√2,√3]
[x2]=forx∈[√3,2]
Therefore,
I=∫10[x2]dx+∫√21[x2]dx+∫√3√2[x2]dx+∫2√3[x2]dx
I=∫100dx+∫√211dx+∫√3√22dx+∫2√33dx
I=0+x|√21+2x|√3√2+3x|2√3
I=(√2−1)+2(√3−√2)+3(2−√3)
I=√2−1+2√3−2√2+6−3√3
I=5−(√2+√3)
Hence, the value of integral is 5−(√2+√3).